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Abstract. The reflection of a de Broglie plane wave incident on a system of point scatterers
(nuclei) forming an ideal semi-infinite crystal is studied using fhenatrix formalism of

the Ewald dynamical theory of diffraction. Using from the beginning the two-dimensional
translational symmetry of the crystal bordered by a surface, simple exact many-beam analytical
formulae for the intensities of the reflected waves are deduced, whereby the Ewald sphere is
replaced by ‘the gamma diagrams’ and the usual three-dimensional dispersion surface by a two-
dimensional ‘dispersion plot’. The results obtained are valid for arbitrary angles of incidence
(including the grazing incidence, Bragg angle ned?, near or far from the Bragg peaks)

and for any directions of the reflected waves (including both the coplanar and the non-coplanar
reflections). The transparent algebraic form of the final formulae allows us to discuss analytically
the solutions of the dispersion relation and the intensities of the reflections.

1. Introduction

The problem of the interaction of radiation (electromagnetic waves, electrons, neutrons and
atoms) with a system of scatterers (nuclei, atoms, molecules and crystals) is encountered in
many branches of physics. Owing to the large variety of parameters characterizing these
processes (plane wave, spherical wave, wavelength and interaction potential), different
(mostly approximate) methods are used. Considering the most traditional scattering of
electromagnetic waves we should mention the methods of classical optics [1], kinematical
[2], dynamical [3—10] and extended dynamical [11-13] theory of diffraction.

To deal with the problem of the diffraction from crystalline materials in the short-
wavelength region, mostly the approach introduced by Bethe [6] and von Laue [7], and less
frequently the Darwin [14] method combined with some thin-film-optics techniques [15-17]
are used. Attention is seldom paid to the Ewald [3, 4] concept [5] which was developed
for studying the scattering of radiation by a system of point scatterers, which is physically
closest to the diffraction of light by point dipoles (Ewald) or of neutrons by nuclei. Qualified
comparison of the Bethe—von Laue method and the Ewald method has been given by Sears
[18, pp 176-7].

In our previous paper [19] we dealt with the diffraction of the scalar de Broglie waves
in an ideal crystal using the formalism of tAematrix [18,20]. Putting the solution of
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the quantum-mechanical Ewald equations into a suitable matrix form we have succeeded in
expressing the reflection and transmission coefficients in a well arranged determinant form,
which is valid quite generally. Recently we applied the results obtained to the study of the
diffraction of neutrons near the Bragg peaks [21]. In the present paper we shall extend the
approach developed to the regions outside the Bragg peaks, where approximations which
are made in the standard dynamical theory fail. In section 2 we present the main ideas of
the quantum-mechanical version of the Ewald dynamical theory of diffraction, the formula
for the reflectivity (2.15) deduced previously in [19], and new forms @) Hhd (2.18) of

the dispersion equation (2.48 These general results, which are valid for all wavelengths,
are analysed in detail in the short-wavelength region. The analysis of the dispersion relation
and its connection with the reflectivity in section 3 differs substantially from those given
in standard textbooks on the dynamical theory of diffraction [8—10]. No three-dimensional
dispersion surface or approximate dispersion hyperbolae for the coplanar diffraction in the
two-beam approximation are introduced. Our dispersion relation l§pi&&epresented for

both coplanar and non-coplanar diffractions by a two-dimensional ‘dispersion plot’ with
poles (figure 2), the position of these poles being given by the geometry and the wavelength
only. The confluence of two poles occurs if the Bragg condition is satisfied. A comparison
of our method with the Bethe—von Laue and the Darwin theory and some generalizations
are given in section 4.

2. The Ewald equations and their solution

Let us consider the diffraction of a particle (neutron) in a system of point scatterers (nuclei).
The Ewald dynamical (self-consistent field) theory of diffraction generalized to quantum

mechanics leads to the following algebraic system of equations for the evaluation of the
wavefunction¥ (r) [18, 20]:

expik| Ry, — Ral)

" (Rp) = f(Rm) =Y On ¢"(Ry) (2.1a)
iklr — R,
v = fr) -y Qn%W(Rﬂ (2.1)

W (r) is the total field at the point, ¢™(R,,,) is the ‘effective field’ incident on the scatterer
located atR,,, and Q,,, the scattering length of this scatterer. The functfam) represents
the primary beam of the incident particles. In our case we shall consider the scalar plane
wave

f(r) = Aexpik - r). (2.2)

Thus in the first step we have to solve the system of the algebraic equatioasgadl
in the second step to insert the solution obtained into equatiob)(2.1

2.1. Diffraction in an ideal crystal

In the following we shall deal with the diffraction of a particle in a simple crystal lattice
forming a slab:
R, = miay + mpaz + mzagz m = (my, mz, ms) Om =0
ml,m2=0,:tl,:t2,...,:l:oo m3=O,l,2,...,N. (23)

The origin of the orthogonal coordinate system lies at the lattice poir@, @; the
plane Oy coincides with the crystal surface plafe;, a;). The axis Q (the unit vector
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e3) and the vectom; x a, point into the crystal ands, > 0. The lattice(gs, g2, g3) IS
reciprocal to the three-dimensional lattices, az, a3). The lattice(by, by) is reciprocal to
the two-dimensional latticéa1, ay); thusb; L es(i, j = 1, 2).

The problem has a two-dimensional discrete translation symmetry in the @lane,).
Thus the components of the wavevectors of the reflected, refracted and transmitted waves
parallel to the crystal surface are of the form

k!, = k" + pb1+qb,. (2.4)

Here k” is the component of the wavevectbr= k" + k,e3(k, > 0) of the incident wave
(2.2) parallel to the surface, ang ¢ are integers. The wavevectaks,, (k) and K;;I (k)
of the reflected and transmitted waves, respectively, are

K, =k, £esKy:. (2.5)
Considering merely elastic scattering process@(kﬂ = k = 27 /X must hold, so that

Kpg: = Kpg: (k) = +[k* — (k;q)2]1/2~ (2.6)
Further let us define the quantities
0F = 6% (k) = a3 K= (k) = aj - k), + a3, K .. 2.7)

From (2.6) it can be seen that there is a finite number (depending on the wavelength
of the incident radiation and the angteof incidence) of reflected waves with rekil,,. (k)
and an infinite number of non-radiative waves with pure imagirigy. (k), which will be
called evanescent waves.

2.2. The Bragg reflection condition and gamma diagrams

Let kg"l be the wavevector of the incident plane wave (2.2) satisfying the Bragg condition
for the reflection in the directioﬂ{;q(kgq’), ie.

K, (k") = (k5" + pg1 + qg2 — lgsl = |k} | (2.8)
with integer!, holds. It has been shown in [19] that (2.8) is equivalent to
Ogo(kp’y — 0,, (k') = 2l I integer (2.9)
If the wavevectork of the incident wave is near the Bragg reflection position, then
Ooo(k) = 6, (k) + 271 + 1pq () Inpgr (k)| < 1 (2.10)

whereby,,i (k) — 0 if k — kb,

Let us mention that, when deducing (2.9) and (2.10), we have not supposed that the
reflected waveK | (k) lies in the plane of incidencék, e3). Thus the parameter,,; (k),
defined by equation (2.10), allows us to handle coplanar and non-coplanar reflections by
the same general procedure.

In most experiments the plane of incidence and the wavelength are kept constant and
only the angley of incidence (measured from the normal to the surface) varies. All
guantities in (2.10) are then functions of the angl®f incidence and equation (2.9) can
be expressed as

L () =271+ npqi(y) (2.11)
with
T, () = 055(¥) = 6,,(¥). (2.12)
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The connection between the parameteand the angles of incidence expressed by
equation (2.11) can be made more transparent using ‘gamma diagrams’. Examples of the
gamma diagramg’,  versusy € (—90°,90°) are plotted in figure 1. Fotp, q) other
than those given in the figure the values K,, from (2.6) are purely imaginary in the
whole interval ofy, i.e. the corresponding waves are evanescent waves and thus will be
excluded from our considerations. The wak& ; ; becomes an evanescent wave for
y € (=90, 1.53r) and similarly for all others except the wau&,, The reflections
Ky, K-, , and K, are coplanar; the others are non-coplanar. Putfing equal to
271, 1 =0,1,2, -1, we obtain the angleﬁlﬁﬂ of incidence for the Bragg reflections, the
diffraction vector beingpg: + gg> — lgs. It can be seen that the Bragg reflection condition
cannot be satisfied in this case A, ;, K;, Ko—2, Ky, K; ; and K.

-90° -45° 0° 45° 90°
T E T
(-1-1) 1-2)
am N e ,
ny . ;
/ N : .
Voo ; : (0-2)
G > 1) : I — (0-1)
1= : TN N (1.0)
= - > N
. : (1.0)
0 P i (0.1) (0.0)
- - \ .
T Ty b
P = a L R S
I [ L [ 1 1 L [
B B B
Yoo Yioo Yo 7(%1 “/18120 ’7%12 ’Y(I»%n “/{3122 ’Y{}m ’YoBoo

incidence angle v (deg)

Figure 1. Gamma diagramE;q(y) = ng(y) —0,,(¥) for the BCC lattice witha; = a(1, 0, 0),

az =a(0,1,0), az = (a/2)(1,1,1), A/a = 0.725,k"||a1 + 2a3, a1 anday lying in the crystal
surface plane. The angiggql is the angle of incidence, for which the Bragg diffraction condition

F;q(ypff{,) = 2nl is satisfied. The inset demonstrates the distanpga(y) = () =27l >0
determining the position and the width of the Darwin plateau (3.7). In the main picture the scale
of the shaded Darwin plateaux could not be preserved.

Let us note that the gamma diagrams in figure 1 replace the traditional Ewald sphere in
the reciprocalk-space.

2.3. Solution of the Ewald equations

Because of the two-dimensional translational symmetry of our problem the solution &f (2.1
can be expressed as a superposition of plane waves [19, 21]:

¢ (Ry) = explik” - (nmiay + n2az)] ) ¢ explinay;)
J
= cjexplix; - Ry) (2.13)
J

with the wavevectors

kj =K'+ (1/27)(;, — K" - az)gs e Y; =az- K, (2.14)
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characterizing the refracted waves. The waveveatgrs p1g1 + p2g»> + pags (p; integers),
andk; are equivalent.

Substituting theAnsatz(2.13) into (2.h) we get firstly the dispersion relation (24)8
(2.1&) for the parameters; in (2.14) determining the wavevectors of refracted waves and
secondly the inhomogeneous system of linear algebraic equations for the amptitudes

We can then evaluate the wavefunction [.and the reflectivity and transmittivity of
a slab. Further we confine ourselves to the case of a semi-infinite crystaV(ie. co).
After evaluating the wavefunction (bllwe have found for the reflectivity of semi-infinite
crystal [19, 21}

R(K, (k) = [Ry(K (k) *| Ro(K 5 (K)) K/ K g e
where
B expliyy) — explifyy)
o 2.16
1( pq( ) expiy;) — exp(if ;) ( )
Roth iy = [ P~ ¥R exp0)) ety -,

Ty expliy)) — exp(ifyy) explie;") — explidgy)

The quantitiesy; in equations (2.16) and (2.17) are solutions of the dispersion relation
[19, 21]

1+ 08k + 12 1
lar x ay| 7q quz
X[ .exp(ielfq). 4 fexp(—iepp . }20 (2.18)
expiy) — expifpy)  exp(—iY) — exp(—itpy)
where

’ ik
S'(k) = Z expliklniay + noaz|)

exp[ik” - (n1a1 + nzag)] (21%)
In1a1 + naaz|

(n1n2)7#(00)

is the well known two-dimensional Ewald optical lattice sum [24, 25], the imaginary part
of which is
2T r 1

Im[S (k)] = — k. (2.1%)

la; x az| K2, >0 quz

This formula follows directly from equation (16) of [19].
Further the scattering lengt can be expressed as

1/Q =1/Qo +ik (2.20)

where ImQg < 0 in a crystal with absorption [18, 20].

In a semi-infinite crystal, only those solutions of the dispersion relation (2.2
and (2.18) should be considered which generate decreasing waves (2.13) in a crystal with
absorption(Im Qg < 0), i.e. thosquj for which

Imy; > 0 when ImQo <0 (2.21)

holds. In a crystal without absorption this condition should be understood in the limit
Im Qo — 0.

1 Equations (2.15)—(2.17) were deduced originally by us in [22] for the reflection of the s-polarized electromagnetic
waves. The paper by Avroet al [23] should be mentioned too.



4714 O Litzman et al

Using (2.19) and (2.20) the dispersion relation (2)1&n be expressed in the following
form appropriate for finding its solutiong:

L” (Y k) + L=(W: k) = h°{1+ QoRe[S'(k)]} (2.18))
with
o 1 1 sin(az, K pq;)
L™ (Y k) =— . . 2.22
W= ;: az: K pgz sin[( — 6,)/2] Sin[(Y — 64)/2] (2:22)
K[quz>0
< 1 Sinr‘(a3z|quz|)
L=(; k) = —[1- 2.23
Wb ; asz|K,u,z|[ Cosr(asz|quz|)—Coilp—agk;ﬁ,,)} (229
2 <0

pPqz

being the finite and infinite sums over &lpg) for which K,,. is real and/or purely
imaginary, respectively. Furthermore

0 __ la1 x ap|
2maz; Qo

Considering (2.9) we can see that the wavevektof the incident wave is in the Bragg
position for the reflection in the direction of the wavevect§r, (k) if in the dispersion
relation (2.18) and (2.18) the polesd (k) andé,, (k) coincide mod z.

Another form of the dispersion relation will prove useful when we need to evaluate
reflectivity. Hence, let us separate in (2al&nd/or (2.18) the terms corresponding to the
polesf, and,,,, converting it into the form

mn?

(2.24)

0 exp(ifg,) 0 exp(—i6,, ) _
O explin) — explitsy ™ exp—iw) — exp—itpy) oW (2-18)
where
o _ip _ i
bpq - |ﬁpq - hoa‘?,zquz (225)
and
FuonW) = FL,, (W) +iF2 () (2.261)
) _ / 1 sin(p —6,,)
Fuv.mn(lp) =1+ QO Re[S (k)] + 2,3141) 1 —7COS(QJ — 9;1;)
1 sin(Q — 6,1 ) 1
2P 1 oS — 65) + hOZuv,mn(qJ) (2.260)
F2 (W) = —3Buw + Bun) (2.260)
/ 1 sin(az; K pqz)
Zuv mn = Zmn uv = . " —
, (LU) , (LIJ) qu: 2a3zquz Sln[(llJ - 9;1)/2] S'”[(UJ - qu)/z]
(pq)#(uv)
(pq)#(mn)
KZ,:>0
—L=, k). (2.26d)

Equations (2.26)—(2.267) hold for (uv) # (mn). The cas€uv) = (mn) is to be considered
separately in a similar way.
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Finally, using the same algebraic procedure as in [21] from }.t8ollows that
expi) — explidgy) ox (—i(@oo m,J) <KOOZ )1/2
expiy) — exp(i@,;n) P 2 Konnz
~[Yon (W) F [¥7, (W) — 1]77] (2.27)

where

K 04
mn(lp) = mn(l-lJ k)=—- [F \/;:| 00 — mn)

-6
+h azz/ KO& Kmnz Foo)mn (UJ) sin ( m ) (2-28)

3. Diffraction by a semi-infinite crystal

In this section we address first the problem of the solution of the dispersion relatioh)(@.18
the short-wavelength region. Then, considering the results obtained, we express reflectivity
Rl(K (k)) in the transparent form (3.3) appropriate for further treatment.

3.1. Solution of the dispersion relation

The left-hand side of the dispersion relation (d)jLl8ontains the variableg) and the given
parameter@;}(k), 0,, (k) andK,,.(k) only. It is a periodic function ofp with the period
27, with poles foqu = 9* +n2m and/ory = 6, +n2r (n integer) increasing or decreasing
in the neighbourhood of the polég oré,,, respectlvely As the right-hand side of (2).8
does not depend on the variahlg the reaI solutionsp; can be obtained graphically as
intersections of the plot of left-hand side of (20)8vith the horizontal straight line

h = h%(1+ QoRelS'(k)]} Im Qp = 0. (3.1)

Since, for neutron diffractiong/ Qo ~ 10* and approximately Re[S'(k)]| = 27/ ka?,
the termQg ReS’ on the right-hand side of (3.1) can be neglected in the short-wavelength
region whereka >~ 1.

We can see that with each po%(e ) a solutloan , (W) as the function of
(k: Qo, a;) can be associated. In pamcular the solution near the @glevhich is the
most important for the evaluation of the reflectivity will be denotedpas= g, As the
second infinite sum on the left-hand side of (D& <(y; k), is convergent very quickly
and the approximate value of any; is known, its exact value can be evaluated with
arbitrary precision by using an appropriately large number of terms on the left-hand side of
(2.18). In this sense the dispersion equation (2)18nd/or (2.18) can be solved exactly.

We performed the analytical study of the dispersion relation in [26] in detalil.

As an example let us consider the diffraction at an angle of incidence near the angle
¥50; found in figure 1. The sund> (Y, y) in (2.181) is now extended oveipq) = (0, 0),
(-1,0), (0,-1), (-1, -1, (0,-2), (-1, —2). In figure 2 we give ‘the dispersion plot’

L> (y; yo) versusy € (—m, ) for yo = y &, — 0.80° = 7185, other parameters being
the same as in figure 1. A = 4.2 x 10%, which corresponds to the scattering length
of Si atoms [10, p 307], it can be seen that at this valuey dGdll solutionqu;.r of the
equationL> (Y, y) = h° are real and very close to the corresponding p@}és If the
wavevectork of the incident wave approaches the Bragg reflection position, in our case if
y = v* 101, the neighbourhood of the polés, , andd;, must be examined very carefully.
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Thus in figure 3(a) we ploL~ (Y; y) versusy € (0.55767 0.558 12 for the parameter

¥/ 101 = ¥201 — 212 s in detail. At this value of the minimum touches the straight
horizontal line ath® = 4.2 x 10*. On the other hand, the maximum touches this line at
Y =¥ 101 = v201.— 0.01 s (see figure 3(b)). Since both the minimum and the maximum
are pushed upwards jf — y2,,, we can conclude that the lin€ does not intersect the

dispersion plot fory e (yfml, ¥’ 10 @nd thus the solutiony, is complex in this interval.

100
= T 7 = P T
Sl el o7 X N &
50- oS = = =
B | I E .
i i AvS v SRV _ J
= 0~J: o :%:ZFJ: S : :
o 1 : n ; 7\ (—\\ '
50 ‘
[~ A~
= T <
-100 T
- —7/2 0 /2 ™

Figure 2. The dispersion plot for the incidence angle = V_Blm — 080 = 7185 (for
further parameters see the caption of figure 1). The intersections of the dispersion plot with
the horizontal straight lin@° give the solutions of the dispersion relation in the twelve-beam

approximation.

15e6
(b)
10e6 b

I B
9—1,05 0

~ Max

5ed

966 | Mi kfn

N -10ed b
[
-20ed -

-30e4

B55T6T 55776 55783 .55794 .55803 .55812 ~40ed 5579224 .557;3259 — 5579294

4 ¥

Figure 3. Details of the dispersion plot in figure 2 for the incidence ang@ﬁ)1 and yilOl'

for which 6=,,(y) is close todgu(y). (a) Aty = Vf101 = y 5,01 — 2.12 s the minimum touches
the horizontal straight liné® = 4.2 x 10* which is the right-hand side of the dispersion relation
(2.1&). The very flat maximum appears gt = 0.55757. If the poledy;(y) is pushed to the
pole 6,(v), both extremes move upwards. (b) At=y’ 15, = ¥ o — 0.01 s the maximum
touches the horizontal lin&?°.
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3.2. Reflectivity profiles

Let us suppose that the Bragg condition (2.9) may be fuffilled for one coupléfgay,,),
only. Sincqu;r is very close to the corresponding pcﬂljé for h° > 1, in (2.15)—(2.17) we
can make the following approximations:

Ro(K, () = 1,

- B ) 1o 3.2)
R(K,, (k) = | Ru(E,, (k)P K pge = RME, (K))

where Ry (K, (k)) is given by (2.16).

First let us analyse the reflectiviig (K »q(K)) qualitatively. Sincap, (k) is very near
055(k), the value of the numerator of the fractidn(K;q(k)) is always small. On the
other hand the value of the denominator of (2.16) depends on whéfhetk) is near
to or far from the Bragg reflection. #/, (k) and 055(k) do not satisfy condition (2.10),
the difference ex(i@l;q(k)) — exp(i90+0(k)) is not small and thus the respective reflectivity
RYK,, (k) is very small. Ifo, (k) andfg,(k) do satisfy condition (2.10), the situation
changes dramatically. The numerator and denominator in (2.16) have now ‘almost the same
small values’ and their quotient should be considered very carefully.

To evaluate the reflectivitfR (K - (K)) we shall use equation (2.27). Comparing its
left-hand side with equations (2.16) and (3.2) we obtain

RMNK,,, (k) = Y,y (W, k) F [Y], Wy, k) — 11712 (3.3)

Thus we have expressed the reﬂecti\mﬁ(K[;q(k)) in the directionK[;q(k) by means
of the functionY,, (Y, k) from (2.28) with\, being the solution of the dispersion relation
(2.1&) lying near the pol&g, The result obtained is exact and should not be confused
with the so-called two-beam approximation of the Bethe—von Laue dynamical theory of
diffraction because it is valid for both coplanar and non-coplanar diffractions in and outside
the Bragg peak regions, including special cases such as reflections for Bragg angles near
/2 or total external reflection, and also because when evalugtinfom (2.1&) the
influence of all beams is taken into account. Note thatenters into (2.28) and thus into
(3.3) via the termFéé?pq(qu), defined by (2.26), rendering both the multiple diffractions in
one atomic plane (the small tery ReS’) and the influence of all other beams thagry).

From (3.3) it follows the condition for the ‘total reflection’:

RYK,, (k) =1 if ¥,,(Wy, k) is real and|Y,, (Y, k)| < 1. (3.4)
On the other hand,

RUK, (k) = if Y,y Wy, k)| > 1. (3.5)

4|qu('-l"1’ k)|2

Using our results we shall analyse the reflectivity in the direchon(k) near the Bragg
peak, i.e. when

bgo(k) = 6,,(k) + 21l + (k) nrsi(k)| <1 (3.6)
holds. Since in neutron diffractio®/a <« 1 and as there is no term with a resonant

denominator inFéé)m(ljJ) given by (2.2®) for Y = ), (supposing as above that only one

beam(rs) satisfies the Bragg reflection condition (3.6)), we may put in (217%%))‘?(%) =1,
so thatY,, depends only on the differenég,(k) — 6,; (k) and not ony,. Expressing now
in equation (2.28) folt,, the differencedg,(k) — 65 (k) by the parameter,, (k) from (3.6)
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and then putting approximately $ip,;/2) = n,5/2 and cogn,/2) = 1, we find that the
condition (3.4) for the total reflection is fulfilled foy, (k) satisfying the condition

- -2

nisz(k'éd) = hiz) : - =
_\/ as, Koo, (K31 \/ az Ky (k") |
< nrsi(k)
< i _ ! + ! I
ne _\/aszKooz(k?l) \/assz(sz;’)_
=/, (k5 @7

with k7' satisfying the Bragg reflection condition (2.8) ahti being real. In our above
approximate considerations we have excluded the cases Whgror K, is very small,
i.e. when the incident or diffracted wave is in the grazing position.

The connection between the intervab;q,, 771{,,1) and the corresponding region of
incidence anglesy[ﬁq,, yp];l) given by equation (2.11) is shown in figure 1. In particular,

let us analyse the important case when the horizontal straight fihén®ersects a gamma
diagram, sayl",,(y), very near its extreme. It can be shown that this case corresponds
to diffraction when the Bragg anglés'’ is nearw/2, where the results of the standard
dynamical theory of diffraction cannot be used [12,27,28]. In particular the formula for
the width of the Darwin plateauy (94) = |y,/, — ! |, diverges (see, e.g., equation (9.37)

in [10]). On the other hand, our approach, which does not require the idea of a dispersion
surface, is directly applicable to this special case. In figure 4, using the gamma diagram
technique we treat the symmetrical reflectiéf}, at the Bragg angléz nearx/2. We

can see that, when the Bragg angle is shifted frof@, the Darwin plateau splits into two
narrower parts, the width of which is given far frofp = 7 /2 by the formula [26]

200052
lay x azlaz, 7 sin(209%)

NGRE 205" =7 — 2y5y (3.8)
which agrees with that yielded by the standard dynamical theory of diffraction (see, e.qg.,
equation (9.37) in [10]). A detailed analytical study of this problem in the framework of
our theory has been given in [26].
If we drop the approximatior}?éé?rj,(wl) =1 in (2.28), then to apply (3.3) we need to
find y, from our dispersion equation (28 Near the Bragg peak where the pof is
close to the pol@_(mod 2r), it is possible to keep only two terms witlpg) = (00) and
(rs) in (2.1&). Thus
Sin(agzKooz) 1
2a3. Koo, sin[(Y — 650)/2] Sin[(W — 65 /2]
sin(az, K ,s;) 1 _ 0
2a3.K,s:  sin[(Y — 675)/2] sin[( — 655)/2]
Introducing here again the small parametgr; from (3.6) and using the same
approximations for the trigonometric functions as above, it is possible to show that the
solution Y, of (3.9) becomes complex fof,.,; from the interval (3.7). Obviously, when

omitting the approximatiowé(l)?m(wl) = 1 the termY,,({);) becomes complex in the Darwin
plateau region (3.7) and thus the condition (3.4) cannot now be fulfilled exactly.

(3.9)
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Figure 4. Gamma diagrams for the symmetrical reflection when the Bragg angle istigar

For the symmetrical reflection, condition (3.7) give&, = 0, and thus the Darwin plateau
begins just at the incidence angi@%l()\) at which the Bragg reflection condition (3.12) is
satisfied. (a) If the Bragg reflection occursﬁ,(ko) =0 (i.e.0p = 7/2) it can be proved that

the line 2r/ is a tangent to the corresponding gamma diagram and consequently the width of
the Darwin plateau is zero. Decreasing the wavelength (according to (3.12) they@gle is
shifted from zero) the maximum of the gamma diagram moves up and the width of the Darwin
plateau increases. (b) Far= A* the line 2t/ + ngw(w) is a tangent to the corresponding
gamma diagram and the width of the (shaded) Darwin plateau reaches its maximum value. (c)
For A < A* the gamma diagram intersects the line/ 2- '7({01 (») and the Darwin plateau splits

into two parts.

In figure 5 we show the reflectivity profilé%l(K[jq(y)) for (pq) = (=1, —1) and (Q 0)

calculated from (3.3) in the approximatid?ﬁpq(wl) = 1. The former case corresponds to
the non-coplanar reflection, and the latter to the symmetrical reflection where our equations
(2.12) and (2.28) have very simple forms, namely

Coo(y) = 6go — b0 = 2as.k cosy = 2x (3.10)
and
Yoo(W, y) = — cosx + hOF{goo(W)x sinx (3.11)

respectively, equation (3.11) being valid for any anglef incidence includingz/2. If
the Bragg reflection condition (2.9) is satisfied for the specularly reflected Mggéc%”),



4720 O Litzman et al

from (2.9) and (3.10) it follows that
2a3 kY cosydy = 2l (3.12)

which is the well known Bragg equation. We can see that the total reflection at grazing
incidence is a special case of the Bragg reflection (2.9) fer0. The total reflection at
grazing incidence was studied by us in [29] in detail.

1 T I ¥ T 1 ¥ H ¥
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1 1
107% 1 &) o _
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Figure 5. Reflectivities of a semi-infinite crystal into the directions ¢&), and (0)K~, , as
functions of the incidence angle measured from the normal to the surface. Note that both (a) the
coplanar and (b) the non-coplanar reflectivities have been calculated from the same equation (3.3)
in the approximationFégM(Lpl) =1, (pq) = (0,0) or (—1, —1); for the discussion of this
approximation see the end of section 3.2. The crystal lattice, the wavelength and the plane
of incidence are defined in the caption of figure 1. The insets show details of (I) the specular
reflectivity around the Bragg reflection peaksg}, and (I the total external reflection at grazing
incidence.

Near the symmetrical Bragg reflection we can write
Yoo, ¥) = Yoa (. ¥; v50) = (—D)'[-1 — (Gh°(az.ky")?
SiN(2ygg)8y + 061)%) FygooW)] (3.13)
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wheresy = y —y§, is the deviation from the Bragg reflection position. Introducing instead
of the incidence angle the glancing angl® = 7 /2 — y, we can see that equation (3.13)
reminds us of the expression

E .
y=-1-— m(@g — 6)sin(20) (3.14)
well known from the von Laue dynamical theory of diffraction (see equation (9.23) in [10])
for the potentialvV from (4.4).
On the other hand, far from the Bragg peaks we get from (3.5) and (3.11) in the
approximationFéé?oo(wl) =1 for the reflectivity of the specularly reflected beam:

RY(Ky) = [2h°(az.k cosy) sin(as.k cosy)] 2. (3.15)

Let us consider for example the reflectivi' (K, ,) outside Bragg peaks for the
incidence angle close toy %, for which Bragg reflection in the directiok ;, appears (see
figure 1). Fory — y5,,,, according to (2.10)95,(y) — 6_;,(y) (mod 2r) holds and the
same holds fotp, which lies neabjy(y). Thus in equation (2.2§ for Fé(l)fflfl(q.ll) aterm
with the resonant denominatorktos, —6_,,) appears, which destroys the approximation
Féé’)flfl(lpl) = 1. Generally, this approximation fails always when the other beam satisfies
the Bragg reflection condition. Hence the profile?b’f(K:l_l(y)) in figure 5(b) should be
corrected in the neighbourhood off;, v% o, andyf, = 7/2. A more detailed analysis
of this ‘fine structure’ of the reflectivity outside Bragg peaks, which could be of interest
in truncation rod scattering [16, 17, 30], would exceed the aim and extent of this paper and
will be published later.

In the dynamical theory of the diffraction of x-rays or particles it is usual to consider
the thermal vibrations by means of the Debye—Waller factor. Thus in our case the scattering
length becomes temperature depende@t(7) = Qoexp(—W(T, 0)) [10, p 306]. The
Debye-Waller factor narrows the region of the total reflection and deforms the profile of
the reflectivity between the Bragg peaks.

4. Concluding remarks

4.1. Comparison with the Bethe—von Laue method

In the dynamical theory of diffraction due to Bethe [6] and von Laue [7] the crystal is
considered as a continuous medium and the propagation of de Broglie waves in an infinite
crystal is studied. Thus we have to solve the 8dirger equation with the periodic potential
Viry=V(r+R,) =) o V(G expliG - 7).

Applying the Bloch theorem we write the solution of the Sidinger equation as

W(r) =Y Cu(@) explitk + G) - 7]. 4.2
G

Using the well known procedure (see, e.g., [10, 18]) we get for the unknown vectors
and for the expansion coefficients, (G) the following system of homogeneous equations:

EZ
[E -V — —(k+ G)Z} Cu(@ = ) V(G—-G)Cu(@G). (4.2)
2m &
#G
The determinant of the infinitely large system of algebraic equations (4.2) will be denoted
as D(k) and the equation for the unknown vectarreadingD(x) = 0 is called the
dispersion relation.
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If the external waved exp(ik - r) impinges upon a semi-infinite crystal bordered by
the surface @y, the wavevectors; of the waves (4.1) propagating inside the crystal must
satisfy besides (4.3) the conditions

Rj = K’ + Kjz€3. (43)

Introducing (4.3) into equatio®(x) = 0 we get the fundamental equation of the Bethe—
von Laue theornyD (k) = O for the evaluation of the components of the wavevectors of the
de Broglie waves in the crystal. Solving (4.2) and using the standard boundary conditions
the intensity of the refracted and reflected waves can be computed.

Let us compare the methods and results of the dynamical theory of diffraction on a
system of point scatterers, based on the solution of thet8uoiger differential equation
and on the Ewald system of algebraic equationsaj2ahd (2. D).

(i) When studying the diffraction of neutrons on a crystal with a simple lattice, the

potential
7

V(r) = —Qoza(r “Ry V@ =vO=_ "l (4.4)

m(ay X ay) a3
is used. Following to [18, p 177], this potential neglects the local-field effects whereas
in the Ewald equations (2a] and (2.D) they are rigorously taken into account. Let us
also recall the critical remark made by James [8, p 61] concerning the use of the classical
boundary conditions in the von Laue method. No boundary conditions are necessary for
the Ewald system of algebraic equations &.and (2.D).

(ii) The system of equations (4.2) is exact and differefiieam approximations for its
solution are used [9, 10, 31]. We are not aware of any formulae for the reflectivity based
on (4.2) which are of such simple analytical form and universal use as our formulae. The
dispersion relation (2.5—(2.1&) and equation (2.15) for the reflectivity by a semi-infinite
ideal crystal with a simple basis are exact. They hold for all wavelengths, for any value of
the scattering length® and any directions of the wavevectors of the incident or reflected
waves, including the grazing incidence, Bragg angle mg&; and both coplanar and non-
coplanar reflections. Owing to the simple analytical form of our formulae their solutions
can be found easily with arbitrary precision.

(i) In the short-wavelength region an analytical comparison shows that equation (3.3)
for the reflectivity R (K »q) agrees with that obtained in the Bethe—von Laue theory when
omitting terms higher tham\ (6 — 0p) [21]. This omission is not possible for example for
0p nearw/2 (see section 3.2). On the other hand, in the long-wavelength region the Ewald
equations yield the usual formulae of classical optics, while in the transient soft-ray region
the corrections of the Snell law and the Fresnel reflection coefficient have been derived [32].
In this connection let us recall Ewald’s words: ‘Besides, my work has been attempting to
establish the unity of classical optics throughout the entire range of wavelengths from
infrared to x-rays. This general aspect has received little resonance.’ [4].

4.2. Comparison with the Darwin method

Recently the classical Darwin method combined with different thin-film-optics algebraic
manipulations has become very popular particularly in connection with the study of
diffraction outside the Bragg peaks in truncation rod scattering [16,17]. Considering the
two-beam case of the Darwin theory, Takahashi and Nakatani [17] recently published the
formula for the reflectivity of x-rays by a semi-infinite crystal formally identical with our
result (3.3). The main difference is in the absence of the tE(ﬁ;}),q(qu) in their deviation
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parameter appearing in (2.25) in [17]. As shown in section 3.2 this term cannot be put
equal to unity when the other beam satisfies the Bragg condition. Naturally, in this case
the two-beam approximation is insufficient. In [17] the extension of the Darwin theory to
the multiple-beam case is shown by studying the coplanar three-beam Bragg case. The
general multiple-beam algebraic method in the Darwin dynamical theory of the diffraction
of scalar waves was developed by Ignatovich [15] by employing the recurrence procedure
[33]. He applies his method to the tetragonal simple lattice and the generalization of
his resulting formulae to general lattices or to lattices with a basis is not evident. Note
that, when calculating the reflection and transmission amplitudes of one atomic plane, he
takes into account the multiple diffractions inside the atomic plane. Evaluating the two-
dimensional lattice sum (2.4 he did not use the traditional method introduced by Ewald

[3] but employed a special procedure. It would be interesting to investigate whether his
sophisticated procedure is applicable to more general lattice sums appearing for example in
LEED [34] or x-ray diffraction [24].

4.3. Further perspectives

In this paper we have confined ourselves to the study of waves outside the crystal. The
analysis of the wave field inside the crystal, leading to a new insight into the well known
Ewald—-Oseen theorem, was performed by one of us in [35].

Let us briefly mention the results obtained for more complicated cases. The problem of
diffraction of particles by a crystal of finite thickness and simple crystal lattice was dealt
with in [36]. The dispersion relation is the same as in the case of a semi-infinite crystal, but
the formula for the reflectivity does not have such a simple form as (2.15)—(2.17). In the
case of a crystal with atoms of basis, the dispersion equation has the more complicated
form [19]

det||l — C — > ({expli(#,, — W)] — 1} B, + {eXp[-i (6, — W)] — 1} 'Dyy)| = 0
Pq
(4.5)

wherel, C, B,, and D,, are matrices of ordes. The dispersion relation of the same
algebraic form appears in the dynamical theory of diffraction of electromagnetic waves
based on the Ewald discrete dipole model of a crystal, which has been reformulated and
further developed in [37]. Neither the dispersion relation (4.5) nor the formulae for the
intensities of the reflected and transmitted waves have been analysed yet. Moreover, in [38]
we have dealt with the diffraction by a crystal with isolated defects. A further problem
to address is the case when two (or more) bedifJs (k) satisfy the Bragg reflection
condition (2.8) simultaneously. Then three (or more) poles in the dispersion relation (2.18)
coincide and thus when evaluating the reflectivity the tétyak ,, (k)) from (2.17) should

be considered too. The Bragg reflection and simultaneous surface reflection at grazing
incidence are an important example of this problem [13].

Ewald elaborated his procedure for the diffraction of electromagnetic waves by a
system of point dipoles and thus it is difficult to take into account the atomic factors
(appearing for example in x-ray diffraction or LEED) without losing the simple form
of the resulting formulae [38]. Nevertheless, the Ewald discrete model of a crystal
and the methods explained above were successfully applied to problems of surface
optics in the long-wavelength region. In particular, the optical response of an adsorbed
monolayer [25,39] and surface-induced optical anisotropy [40] have been addressed.
Recently the Ewald approach was developed to describe the propagation of electromagnetic
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waves in magnetoelectric crystals [41] and the surface second-harmonic generation by
centrosymmetric semiconductors [42].

The quantum-mechanical generalization of the Ewald method, giving exact and simple
analytical formulae, can be used for testing some approximations used in the Bethe—von
Laue and the Darwin theories. Besides this, the problem of the diffraction of particles by a
semi-infinite crystal of delta-like potentials represents one of the rare problems of quantum
mechanics which can be solved exactly in an analytical form and represents a problem of
more general interest [43].
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